Effect of Titania over Silica as Support for Platinum Catalyst on Butane Hydrogenolysis

The group VIII metals/TiO₂ systems have received attention in strong metal-support interaction (SMSI) (1-3) because of its promising potential in controlling the catalytic performance (activity and selectivity) of the supported metal catalysts. Concerning the support, it has been reported that the SMSI behavior strongly depends on the nature and/or environment of the TiO_2 (4, 5). The nature of the dispersed TiO_2 on other metal oxides should be different from that of bulk $TiO_2(6, 7)$. Thus, the metal-support interaction between dispersed TiO₂ and the Pt particle can be expected to be different from that occurring on bulk TiO_2 . In this note, we report the evidences for the metalsupport interaction between dispersed TiO₂ phase on SiO₂ and supported Pt particles by the combined TPR-TPD technique (8) and butane hydrogenolysis. The two types of the metal-support interactions ("light" SMSI and "deep" SMSI) playing different roles in H₂ adsorptivity and hydrogenolysis activity of platinum particles are proposed.

The samples of dispersed TiO₂ on SiO₂ (TiO₂/SiO₂) with different TiO₂ amounts (2.9 and 11.4 mmol g⁻¹) were prepared by the method reported elsewhere (7). The Pt/TiO₂/SiO₂ catalysts were prepared by the impregnation of the TiO₂/SiO₂ with aqueous solution of chloroplatinic acid, followed by drying at 383 K and calcining at 773 K for 3 h. The amount of Pt was adjusted to be 2 wt% for all Pt/TiO₂/SiO₂ catalysts was prepared by the impregnation of TiO₂ with aqueous solution of chloroplatinic acid, followed by drying at 383 K and calcining at 773 K for 3 h. The amount of Pt was adjusted to be 2 wt% for all Pt/TiO₂/SiO₂ catalysts. The Pt(2 wt%)/TiO₂ bulk catalyst was prepared by the impregnation of TiO₂ with aqueous solution of chloroplatinic acid (8). The TPR apparatus used in this study was described in detail elsewhere (8). The two H₂ TPD

experiments (heating rate 15 K/min, carrier Ar) were carried out successively after the TPR measurement (heating rate 10 K/min, carrier 3% H₂ in Ar). In the first TPD, the sample was cooled to room temperature in the presence of the reductive gas, then the carrier gas was switched into a pure Ar to start the TPD measurement. The final temperature in the first TPD run was 873 K. The sample was cooled to room temperature in pure Ar, the reductive gas was admitted at room temperature for 1 min, and then the second TPD was started. Prior to the TPR measurement, the sample was calcined at 773 K in air for 2 h and heated in a flowing Ar at 573 K for 2 h.

Butane hydrogenolysis to methane, ethane, and propane was carried out in a closed recirculation reactor at 573 K with a mixture of 20 Torr butane and 100 Torr H₂ (1 Torr = 133.3 Nm⁻²) on the catalyst pretreated in an H₂ flow (30 cm³ min⁻¹) at 623 or 773 K for 2 h. The conversion and selectivity were calculated by the method described by Bond *et al.* (9).

The typical TPR, the first and second TPD profiles (for Pt/TiO₂(11.4)/SiO₂ sample treated by H₂ at 623 K) are shown in Fig. 1. No appreciable H₂ consumption appeared above 623 K for the samples. For the first TPD, the adsorbed hydrogens onto the sample during TPR measurement and cooling in the presence of reductive gas are detected. Since all H₂ species adsorbed on the surface are considered to be removed from the surface at the end of the first TPD, the second TPD profiles represent the evolved H₂ species resulted from H₂ adsorption at room temperature (8). The peak temperature for

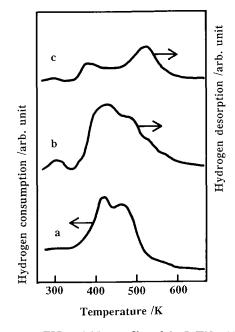


FIG. 1. TPR and TPD profiles of the Pt/TiO_2 (11.4)/ SiO₂ sample. (a) TPR profile, (b) first TPD profile, (c) second TPD profile. The TPD profiles were obtained after TPR measurement up to 623 K. The TPD profiles were measured by increasing the sensitivity of the detector.

high-temperature desorption peak in the second TPD for the $Pt/TiO_2(11.4)/SiO_2$ is higher than those for the $Pt/TiO_2(2.9)/SiO_2$ and Pt/SiO_2 samples. This indicates the generation of stronger H₂ adsorption sites by increasing the TiO₂ content.

The amounts of H₂ consumption determined from TPR profiles up to 623 K were larger for the Pt/TiO₂/SiO₂'s than for Pt/SiO₂ and were much higher than that required to reduce all PtO particles to metallic Pt, i.e., H₂/Pt = 1 (Table 1, H₂/Pt values). If we assume that the initial oxidation state of platinum in the Pt/TiO₂/SiO₂ samples is the same as that in Pt/SiO₂, H₂ should be consumed not only in reduction of PtO to metallic Pt but also in reduction of Ti⁴⁺ ions to Ti³⁺ on the TiO₂/SiO₂ samples via hydrogen spillover mechanism (10–12).

The amount of desorbed H_2 from the Pt/ TiO₂/SiO₂ samples depends upon the final temperature in the preceding TPR run (H₂ treatment temperature) and the TiO₂ contents. The total amounts of desorbed H₂ in the first TPD are included in Table 1. The amount of desorbed H₂ increased greatly as the TiO₂ content increased from 2.9 to 11.4 mmol g⁻¹. The amount of H₂ chemisorbed on the Pt/TiO₂(11.4)/SiO₂ was larger for the samples treated at 773 K than those treated at 623 K. The amounts of desorbed H₂ in the second TPD are also given in Table 1.

The desorbed amounts were almost the same for the Pt/SiO_2 , $Pt/TiO_2(2.9)/SiO_2$, and Pt/TiO₂(11.4)/SiO₂. For Pt/TiO₂(2.9)/SiO₂, the desorption peak was not appreciable in the first or second TPD measurements; H₂ adsorption scarecely occurred on the Pt/ $TiO_2(2.9)/SiO_2$ treated with H₂ at 773 K. From the above results, it is suggested that with Pt/TiO₂(2.9)/SiO₂, the SMSI state facilitates too deeply to be released during the first TPD (treatment with Ar at 873 K). This clearly demonstates that the degree of the SMSI is controlled by changing the amount of interacting component. This might be caused both by the higher reducibility for the TiO₂ phase in TiO₂(2.9)/SiO₂ than for the other TiO₂/SiO₂ samples and by different TiO₂ structures with different TiO₂ contents, as evidenced by EXAFS/XANES spectroscopy (7).

The TOFs for butane hydrogenolysis and product selectivities at the initial stage of the reaction over the catalysts pretreted at 623 and 773 K are summarized in Table 1. The butane hydrogenolysis proceeded faster for the Pt/TiO₂/SiO₂ catalysts than for the Pt/SiO₂ and Pt/TiO₂ catalysts. This is attributed to the promotional effect of addition of TiO_2 on SiO_2 . This type of enhancement of hydrogenolsysis activity has been reported on Rh/TiO₂ (bulk) after low-temperature H₂ treatment with high Rh dispersion (2). For all catalysts, the activities were higher for the catalysts pretreated at 623 K than for the catalysts pretreated at 773 K. The decrease in the activity on raising the pretreatment temperature was much larger for the catalysts containing 2.9 mmol g^{-1} TiO_2 than for the catalyst containing 11.4

ΤA	BL	Æ	1
----	----	---	---

Catalyst	TiO_2 content (mmol g ⁻¹)	Pre. temp. (K)	H ₂ /Pt ^a	H/Pt ^b	H/Pt ^c	TOF (min ⁻¹)	Selectivity to		
							C ₁	C ₂	C_3^d
Pt/SiO ₂	0	623	0.50	0.10	0.21	0.72	39.0	39.5	21.5
Pt/TiO ₂ /SiO ₂	2.9	623	0.99	0.09	0.22	6.64	45.3	18.7	36.0
	2.9	773		0.06	< 0.06	< 0.60	44.5	20.6	34.9
	11.4	623	1.67	0.24	0.22	23.5	47.8	18.4	33.8
	11.4	773	—	0.42	0.40	4.44	51.3	4.4	44.3
Pt/TiO ₂	_	623	0.47	0.37	0.12	0.36	41.0	16.0	43.0
	_	773	_	0.49	nm ^e		38.9	17.5	43.6

Product Selectivities, H/Pt Values, and Turnover Frequencies (TOF) of the Pt/TiO₂/SiO₂ Catalysts Pretreated with H₂ at 623 and 773 K

^a Value of consumed H₂ per platinum was determined by TPR profiles up to 623 K.

^b Determined from the corresponding first TPD profiles.

^c Determined from the corresponding second TPD profiles.

^d C₁, methane; C₂, ethane; C₃, propane.

^e Not measurable.

mmol g^{-1} TiO₂. A distinct difference in the selectivity was also observed between Pt/SiO₂ and the other catalysts. The selectivity for C₂ was high for Pt/SiO₂ as compared to Pt/TiO₂/SiO₂ catalyst. The selectivities of the Pt/TiO₂/SiO₂ catalysts were similar to those of Pt/TiO₂ bulk in the sense that the selectivities for C₂ were low and those for C₁ and C₃ were high.

The states of platinum on the TiO₂/SiO₂ supports are different than those on the SiO_2 in reducibility, H₂ adsorptivity, and catalytic property. The platinum particles should interact with titanium oxide phases dispersed over SiO₂ surface after H₂ treatment to alter the energetics for reactant adsorption (13). In SMSI state, platinum particles strongly interact with titania suboxide (TiO_r) in the vicinity of the platinum particle (14-16). In a deep SMSI state occurring for the Pt/ $TiO_2(2.9)/SiO_2$, platinum may fully interact with TiO, species. As a result, platinum particles cannot adsorb H₂ strongly and lose the butane hydrogenolysis activity. For Pt/ $TiO_2(11.4)/SiO_2$, the SMSI state of platinum is light, and the uninteracted Pt surface is left to some extent. By such a light interaction of platinum particles with dispersed TiO₂ phase, the strong H_2 adsorption sites are generated, and thus the promotional effect of TiO₂ is realized. The origin of the SMSI behaviors in the Pt/TiO₂/SiO₂ catalysts and the roles of the dispersed TiO₂ phases are still matters for further investigation.

REFERENCES

- Tauster, S. J., Fung, S. C., and Garten, R. L., J. Am. Chem. Soc. 100, 170 (1978).
- Haller, G. L., and Resasco, D. E., *in* "Advances in Catalysis" (D. D. Eley, H. Pines, and P. B. Weisz, Eds.), Vol. 36, p. 173. Academic Press, San Diego, 1989.
- Burch, R., *in* "Hydrogen Effects in Catalysis" (Z. Paál and P. G. Menon, Eds.), p. 347. Dekker, New York, 1988.
- Murrel, L. L., and Yates, D. J. C., Stud. Surf. Sci. Catal 7, 1470 (1981).
- Ko, E. I., and Wagner, N. J., J. Chem. Soc., Chem. Commun., 1274 (1984); Ko, E. I., Chen, J. -P., and Weissman, J. G., J. Catal. 105, 511 (1987).
- Fernandez, A., Leyrer, J., Gonzalez-Elipe, A. R., Munuera, G., and Knözinger, H., J. Catal. 112, 489 (1988).
- Salama, T. M., Tanaka, T., Yamaguchi, T., and Tanabe, K., Surf. Sci., L100 (1990); Salama, T. M., Doctoral thesis, Hokkaido University, 1991.
- Ebitani, K., and Hattori, H., Bull. Chem. Soc. Jpn. 64, 2422 (1991).

- Bond, G. C., Yahya, R., and Coq, B., J. Chem. Soc., Faraday Trans. 86(12), 2297 (1990).
- Pajonk, G. M., Teichner, S. J., and Germain, J. E., Eds., "Spillover of Adsorbed Species." Elsevier, Amsterdam, 1983.
- 11. Huizinga, T., and Prins, R., J. Phys. Chem. 85, 2156 (1981).
- Conesa, J. C., and Soria, J., J. Phys. Chem. 86, 1392 (1982); Conesa, J. C., Malet, P., Munuera, G., Sanz, J., and Soria, J., J. Phys. Chem. 88, 2986 (1984).
- 13. Raupp, G. B., and Dumesic, J. A., J. Phys. Chem. 88, 660 (1984).
- 14. Braunschweig, E. J., Logan, A. D., Datye, A. K., and Smith, D. J., J. Catal. 118, 227 (1988).
- Munuera, G., González-Elipe, A. R., Espinós, J. P., Conesa, J. C., Soria, J., and Sanz, J., J. Phys. Chem. 91, 6625 (1987).

 Martens, J. H. A., Prins, R., Zandbergen, H., and Koningsberger, D. C., J. Phys. Chem. 92, 1903 (1988).

> Kohki Ebitani Tarek M. Salama Hideshi Hattori¹

Department of Chemistry Faculty of Science Hokkaido University Sapporo 060 Japan

Received September 9, 1991; revised October 28, 1991

¹ To whom correspondence should be addressed.